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A dual resonance model solves the Yang–Baxter equation
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Abstract. The duality of dual resonance models is shown to imply that the four-point string
correlation function solves the Yang–Baxter equation. A reduction of transfer matrices toAl
symmetry is described by a restriction of the KPτ function to Toda molecules.

In this article duality means thestu duality embodied in the dual resonance model [1]
developed in the late 1960s and 1970s as a model which describes hadron scattering
processes. The purpose of this article is to supply an argument which clarifies the link
among three independent subjects in physics: string models in particle physics, solvable
lattice models in statistical physics, and soliton theory. In particular it will be shown that
the old duality assures that, for a four-point string correlation function, we can solve the
Yang–Baxter equation.

The correspondence between the soliton theory and the string models is rather straight-
forward [2]. The string correlation functions solve the Hirota bilinear difference equation
(HBDE), defined as [3]

αf (k1+ 1, k2, k3)f (k1, k2+ 1, k3+ 1)+ βf (k1, k2+ 1, k3)f (k1+ 1, k2, k3+ 1)

+γf (k1, k2, k3+ 1)f (k1+ 1, k2+ 1, k3) = 0 (1)

with α+β+γ = 0. This single equation is equivalent to the KP-hierarchy in soliton theory
[4]. A solution of this equation is called theτ function [5].

The soliton theory and the solvable lattice models, on the other hand, share the common
structure of integrability, called the quantum inverse-scattering method [6]. There have
been interesting works in which a more direct correlation between these two subjects was
discussed [7, 8]. Very recently new light was cast on this connection through the papers
[9, 10] in which it was pointed out that the algebraic relation satisfied by the transfer matrix
of the solvable lattice model withAl symmetry is nothing but the HBDE (1). Moreover in
[9] the authors showed that the linear Bäcklund transformation of the HBDE [11] generates
a series of Bethe ansatz solutions.

These results can be summarized such that the HBDE unifies the three problems under
consideration. The same solutions, however, are interpreted quite differently from one
another: a correlation function of strings, theτ function of soliton theory and a transfer
matrix of the solvable lattice models. From a mathematical point of view it is apparent
that the HBDE embodies a very large symmetry which guarantees integrability of systems
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with infinite degrees of freedom irrespective of their physical interpretations. Such a
mathematical unification of different models, however, does not mean we understand them
from a physics point of view.

The case we are concerned with here, the link between the string models and the solvable
lattice models, is most obscure since their relation is indirect. Apart from the fact that the
correlation functions of strings and the transfer matrix of solvable models are governed
by the same equation, their connection is not manifest at all. I would like to fill this gap
by showing that the lattice models, whose Boltzmann weight is given by the four-point
correlation function of the string models, are solvable. The proof is achieved by noting that
the stu duality of the dual resonance models [1] guarantees that the Yang–Baxter equation
can be solved.

To begin with let us briefly reformulate the string correlation functions in a way suitable
for our discussion in the following [12, 2]. We considerN external strings interacting with
each other through the worldsheet specified by the ground state|G〉. It is given by

FG(K1,K2, . . . , KN) := 〈0|W(K1, g1)W(K2, g2) . . .W(KN, gN)|G〉. (2)

Here thej th string is assumed to have momentumKµ

j (z) distributed along a pathgj (z)
in the worldsheet. The path is assumed to close a contour as the local coordinatez of the
worldsheet moves around a circle. The interaction takes place via the vertex operator [13]

W(Kj , gj ) = exp

[
1

2π

∮
dz

z
K
µ

j (z)X
µ
+(gj (z))

]
exp

[
1

2π

∮
dz

z
K
µ

j (z)X
µ
−(gj (z))

]
. (3)

Here the string coordinateXµ(z) = Xµ+(z)+Xµ−(z) is defined by the following expansion:

X
µ
−(z) = xµ +

∞∑
n=1

a
µ
n√
n
zn

X
µ
+(z) = ipµ ln z +

∞∑
n=1

a
†µ
n√
n
z−n

(4)

whose components satisfy

[xµ, pν ] = iδµν [aµm, a
ν
n
†] = δµνδmn m, n ∈ Z>1. (5)

If Kµ

j is a constant vectorkµj , the vertex operatorW(Kj , gj ) turns to the ordinary vertex
operator for the external ground-state particle of momentumk

µ

j

V (kj , zj ) = eikµj X
µ
+(zj )eikµj X

µ
−(zj ) (6)

wherezj = gj (0). Thereforekµj is the barycentric momentum of thej th string. To simplify
the formulae, the spacetime indicesµ, ν, . . . will be suppressed in what follows.

The empty state|0〉 is defined by

p|0〉 = an|0〉 = 0 n = 1, 2, . . . ,

while the ground state is defined by|Gh〉 = Gh(X)|0〉, where [14]

Gh(X) = θ
(
ζ − 1

2π

∮
dX(z)

∫ z

ω

)
exp

[
1

8π2

∮
dX(x)

∮
dX(y) ln

E(x, y)

x − y
]
. (7)

θ, ω,E(x, y), ζ are the Riemann theta function, the Abel differential, the prime form, and
an arbitrary vector, respectively, all defined on the worldsheet of genush.

The connection of the correlation function (2) with theτ function of the KP hierarchy
was shown [2] to follow

FG(K1,K2, . . . , Kn)

F0(K1,K2, . . . , Kn)
= τ(t). (8)
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Figure 1.

HereF0 is given by (2) with|G〉 replaced by|0〉, andt denotes the collection of the soliton
coordinates{t1, t2, . . .} which are related to the string variables by

tn = 1

n

N∑
j=1

1

2π

∮
dz

z
Kj (z)g

n
j (z) n = 1, 2, . . . . (9)

Note that, whenKµ

j (z) = kµj , this reduces to the Miwa transformation [4]. The proof that
(8) satisfies (1) is exactly the same as in [2]. The variables in (1) are any three chosen out
of the constant components ofKj(z)s.

We now consider the link between the string model and the solvable lattice model. The
main step toward this problem is to define the Boltzmann weight properly, so that the Yang–
Baxter equation is solved. Here a two-dimensional lattice model is proposed whose links
are specified by string momentaK(z)s and Boltzmann weight is given by the four-point
string correlation function

R
K ′′,K ′′′
K,K ′ = 〈0|W(K, g)W(K ′, g′)W̄ (K ′′, g′′)W̄ (K ′′′, g′′′)|0〉. (10)

HereW̄ is the operator whose in-state and out-state are reversed by changingK(z) toK( 1
z
)

in (3). Note thatW̄ (K, g) can be always replaced byW(K, ḡ) with ḡ(z) = g( 1
z
).

Using this Boltzmann weight the transfer matrix of the model is defined by

T
K ′1,K

′
2,...,K

′
M

K1,K2,...,KM
=
∑
{K ′′j }

R
K ′′2 ,K

′
1

K ′′1 ,K1
R
K ′′3 ,K

′
2

K ′′2 ,K2
. . . R

K ′′1 ,K
′
M

K ′′M,KM
. (11)

The summation overK ′′j means the functional integration over all possible paths of strings
K ′′j . In order to calculate the right-hand side of this formula we use the identity which holds
under cyclic permutations

〈0|W(K1, g1)W(K2, g2) . . .W(KN−1, gN−1)W̄ (KN, gN)|0〉
= 〈0|W(KN, ḡN)W(K1, g1) . . .W(KN−2, gN−2)W̄ (KN−1, ḡN−1)|0〉 (12)

and also the factorization rule [12]

〈0|W(K1, g1)W(K2, g2) . . .W(Kj , gj ) . . .W(KN−1, gN−1)W̄ (KN, gN)|0〉
=
∑
K

〈0|W(K1, g1)W(K2, g2) . . .W(Kj , gj )W̄ (K, g)|0〉

×〈0|W(K, g)W(Kj+1, gj+1) . . .W(KN−1, gN−1)W̄ (KN, gN)|0〉. (13)

The summation overK ′′1 in (11) reproduces exactly the one-loop string amplitude [15] and
all the external ground-state particles are generalized to strings. Hence it turns out that it is
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given explicitly by the 2M-point string correlation function, defined on a torus worldsheet
associated with the ground state|G1〉:
T
K ′1,K

′
2,...,K

′
M

K1,K2,...,KM
= 〈0|W(K1, g1)W̄ (K

′
1, g
′
1)W(K2, g2) . . . W̄ (K

′
M, g

′
M)|G1〉

= FG1(K1, K̄
′
1,K2, K̄

′
2, . . . , KM, K̄

′
M). (14)

whereK̄j means that the stringKj is in the outgoing state.
We now proceed to clarify the correspondence of the string correlation functions to the

Yang–Baxter equation. Let|8)j denote the vector on which the external string specified
by Kj acts. This is different from the state|·〉 on which the internal string lineX of (4)
acts. Every external string belongs to its own vector space [16, 13]. The Boltzmann weight
R
K3,K4
K1,K2

changes the state|8)1 ⊗ |8)2 to |8)4 ⊗ |8)3. If Kj andK ′j belong to the same

vector space andKk andK ′k belong to another vector space, respectively,R
K ′j ,K

′
k

Kj ,Kk
exchanges

the strings. Namely

R
K ′j ,K

′
k

Kj ,Kk
|8)j |8)k = |8′)k|8′)j .

The spectral parameteru which characterizes the Boltzmann weight can be identified by
the logarithm of the ratio ofzj = gj (0) andzk = gk(0), ln(zj /zk). Note that they appear as
spectral parameters of the inverse scattering problem for the KP hierarchy.

Now writing R
K ′j ,K

′
k

Kj ,Kk
simply asRjk(u) the Yang–Baxter equation is given by

R12(u)R13(v)R23(v − u) = R23(v − u)R13(v)R12(u) (15)

whereu = ln z1 − ln z2 andv = ln z1 − ln z3. This is a sufficient condition for the transfer
matrices with different spectral parameters to commute each other, hence the model is
solvable [17].

Instead of dealing with (15) we present a more general relation which holds among
arbitrary Boltzmann functions.∑

K,K ′,K ′′
R
K4,K5
K,K ′ R

K,K6
K1,K ′′R

K ′,K ′′
K2,K3

=
∑

K,K ′,K ′′
R
K5,K6
K ′,K R

K4,K
K ′′,K3

R
K ′′,K ′
K1,K2

. (16)

The left- and right-hand sides of this equation correspond to figure 2.
To prove (16), I claim that it is nothing more than the duality relation. In fact, by using

the permutation symmetry and the factorization property again, the left-hand side of (16)

Z
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can be calculated as∑
K,K ′,K ′′

〈0|W(K, g)W(K ′, g′)W̄ (K4, g4)W̄ (K5, g5)|0〉

×〈0|W(K1, g1)W(K
′′, g′′)W̄ (K, g)W̄ (K6, g6)|0〉

×〈0|W(K2, g2)W(K3, g3)W̄ (K
′, g′)W̄ (K ′′, g′′)|0〉

=
∑

K,K ′,K ′′
〈0|W(K ′, g′)W̄ (K4, g4)W̄ (K5, g5)W̄ (K, ḡ)|0〉

×〈0|W(K, ḡ)W̄ (K6, g6)W(K1, g1)W̄ (K
′′, ḡ′′)|0〉

×〈0|W(K ′′, ḡ′′)W(K2, g2)W(K3, g3)W̄ (K
′, g′)|0〉

= 〈0|W̄ (K4, g4)W̄ (K5, g5)W̄ (K6, g6)W(K1, g1)W(K2, g2)W(K3, g3)|G1〉
(17)

while the right-hand side becomes∑
K,K ′,K ′′

〈0|W(K ′, g′)W(K, g)W̄ (K5, g5)W̄ (K6, g6)|0〉

×〈0|W(K ′′, g′′)W(K3, g3)W̄ (K4, g4)W̄ (K, g)|0〉
×〈0|W(K1, g1)W(K2, g2)W̄ (K

′′, g′′)W̄ (K ′, g′)|0〉
=

∑
K,K ′,K ′′

〈0|W(K, g)W̄ (K5, g5)W̄ (K6, g6)W̄ (K
′, ḡ′)|0〉

×〈0|W(K ′, ḡ′)W(K1, g1)W(K2, g2)W̄ (K
′′, g′′)|0〉

×〈0|W(K ′′, g′′)W(K3, g3)W̄ (K4, g4)W̄ (K, g)|0〉
= 〈0|W̄ (K5, g5)W̄ (K6, g6)W(K1, g1)W(K2, g2)W(K3, g3)W̄ (K4, g4)|G1〉.

(18)

These are two equivalent expressions of the 6-point one loop amplitude:

FG1(K1,K2,K3, K̄4, K̄5, K̄6)

= 〈0|W(K1, g1)W(K2, g2)W(K3, g3)W̄ (K4, g4)W̄ (K5, g5)W̄ (K6, g6)|G1〉.
(19)

In other words they are two different ways of factorizing (19) [12]. The correspondence
of (16) to (15) will become explicit if we substitute(K,K ′,K ′′) and (K ′1,K

′
2,K

′
3) for

(K ′′1 ,K
′′
2 ,K

′′
3 ) and(K4,K5,K6), respectively, and letKj,K ′j , K

′′
j belong to the same vector

space for eachj = 1, 2, 3. This justifies our claim.
We have just established the direct link between the string models and the solvable

lattice models. In the rest of this paper I would like to demonstrate that, through some
reduction, we can obtain a familiar solvable lattice model. It will, at the same time, partly
explain the mysterious relation between the Yang–Baxter equation and the HBDE recently
discussed in [9, 10].

The transfer matrixT (µ)ν (λ) of the solvable lattice model associated withAl symmetry
was shown [9, 10] to solve the HBDE (1). The variablesµ, ν andλ of T (µ)ν (λ) denote the
size of theµ× ν rectangular Young tableaux and the spectral parameter which specifies the
Boltzmann weight. They are related to the variablesk1, k2, k3 of the HBDE according to
µ = k2 + k3 − 1, ν = k3 + k1 − 1, λ = k1 + k2 − 1. This correspondence sounds rather
artificial becauseµ and ν have meaning of the size of Young’s tableaux and a range of
certain finite intervals, while for thek1, k2 and k3 range all integers or periodic boundary
conditions are imposed.
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Figure 3.

In order to resolve this unnatural aspect the HBDE is first written in terms of new
variables

ατ(λ+ 1, µ, ν)τ (λ− 1, µ, ν)+ βτ(λ, µ+ 1, ν)τ (λ, µ− 1, ν)

+γ τ(λ, µ, ν + 1)τ (λ, µ, ν − 1) = 0, (20)

whereτ(λ, µ, ν) = f (k1, k2, k3). In the following remark the results used are quoted from
recent work [18] in a slightly different form, appropriate to this discussion.

Remark. Let τ(λ, µ, ν) be a solution of the HBDE (20), andA(λ̄, µ̄, ν̄) an octahedron
consisting of the nearest neighbours of the point at(λ, µ, ν) = (λ̄, µ̄, ν̄) in the lattice space
Z3, then

τ̄ (λ, µ, ν) =
{
τ(λ, µ, ν), (λ, µ, ν) ∈ A(λ̄, µ̄, ν̄)
0 otherwise

(21)

is also a solution to HBDE (20).

This is the smallest piece of Toda lattice which is shown in figure 3. The proof of (21)
is simple. Consider another octahedronA′ which shares at least one point ofA. Since
τ(λ, µ, ν) = 0 on every lattice point surroundingA, the τ(λ, µ, ν)’s on the octahedronA′
automatically satisfy (20).

The generalization of (21) to an arbitrary size of piece of Toda lattice is straightforward.
Let us call such a piece a Toda molecule according to [19]†. Then the smallest unit (21)
should be called a Toda atom. A Toda molecule must be rectangular when it is sliced
perpendicular to each axis of the lattice, for it to be a solution of the HBDE (20). We can
consider a collection of Toda molecules if they are not joined to each other. An example of
a slice of such a collection is given in figure 4. Note that each piece can be an independent
solution of the HBDE.

Now we go back to our lattice model whose Boltzmann weight is given byR
K ′′,K ′′′
K,K ′ of

(10) butK ′ andK ′′′ are reduced to their barycentric momenta taking only integral numbers.
Using this Boltzmann weight we construct the transfer matrix which carries only integral
numbers in its legs. According to the above remarks we can consider any size of Toda
molecules in equal basis. From this point of view we can think of this numbering of the
legs as specifying the size of the rectangular slice of a molecule instead of the address on
the lattice space.

† The term ‘Toda molecule’ is often used in a slightly different sense. We use this name to mean what we defined
in the remark.
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Figure 4. A slice of Toda molecules.

Adopting this convention we consider a solvable lattice model with theAl symmetry.
We identify the transfer matrix associated with theµ× ν = (k2 + k3 − 1)× (k3 + k1 − 1)
rectangular-type Young’s tableaux with the same size of Toda molecule in the(µ, ν) plane.
Further identification of the spectral parameterλ with k1 + k2 − 1 completes the desired
correspondence.

In concluding this paper please note the following comments. The partition function
of our lattice model itself is a correlation function (2) of strings. Hence it is a solution of
the HBDE. This form of a general string correlation function was calculated [20] explicitly
to reproduce (2) using the vertex operatorW in (3) as a building block. From this point
of view the solvable lattice model is nothing but a special case of analogous (or fish net)
models [21] discussed in connection with hadron scattering processes. Therefore this model
has been shown to be integrable in two folds. Namely, it satisfies the HBDE [2] and also
satisfies the Yang–Baxter equation as shown in this paper.

The braid of strings was discussed in [22]. There, the vertex operatorW was regarded
as representing a state of the string, and a braid of strings was caused through an exchange
of the order ofWs. The exchange matrix was derived assuming that states of the strings
were not changed under their exchange of order because of duality. Hence it is included as
a special case of current work.
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