A dual resonance model solves the Yang - Baxter equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys. A: Math. Gen. 308289
(http://iopscience.iop.org/0305-4470/30/23/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:07

Please note that terms and conditions apply.

A dual resonance model solves the Yang-Baxter equation

Satoru Saito \dagger
Department of Physics, Tokyo Metropolitan University Minami-Ohsawa, Hachiohji, Tokyo 192-03, Japan

Received 7 March 1997, in final form 19 September 1997

Abstract

The duality of dual resonance models is shown to imply that the four-point string correlation function solves the Yang-Baxter equation. A reduction of transfer matrices to A_{l} symmetry is described by a restriction of the KP τ function to Toda molecules.

In this article duality means the stu duality embodied in the dual resonance model [1] developed in the late 1960s and 1970s as a model which describes hadron scattering processes. The purpose of this article is to supply an argument which clarifies the link among three independent subjects in physics: string models in particle physics, solvable lattice models in statistical physics, and soliton theory. In particular it will be shown that the old duality assures that, for a four-point string correlation function, we can solve the Yang-Baxter equation.

The correspondence between the soliton theory and the string models is rather straightforward [2]. The string correlation functions solve the Hirota bilinear difference equation (HBDE), defined as [3]

$$
\begin{gather*}
\alpha f\left(k_{1}+1, k_{2}, k_{3}\right) f\left(k_{1}, k_{2}+1, k_{3}+1\right)+\beta f\left(k_{1}, k_{2}+1, k_{3}\right) f\left(k_{1}+1, k_{2}, k_{3}+1\right) \\
+\gamma f\left(k_{1}, k_{2}, k_{3}+1\right) f\left(k_{1}+1, k_{2}+1, k_{3}\right)=0 \tag{1}
\end{gather*}
$$

with $\alpha+\beta+\gamma=0$. This single equation is equivalent to the KP-hierarchy in soliton theory [4]. A solution of this equation is called the τ function [5].

The soliton theory and the solvable lattice models, on the other hand, share the common structure of integrability, called the quantum inverse-scattering method [6]. There have been interesting works in which a more direct correlation between these two subjects was discussed $[7,8]$. Very recently new light was cast on this connection through the papers $[9,10]$ in which it was pointed out that the algebraic relation satisfied by the transfer matrix of the solvable lattice model with A_{l} symmetry is nothing but the HBDE (1). Moreover in [9] the authors showed that the linear Bäcklund transformation of the HBDE [11] generates a series of Bethe ansatz solutions.

These results can be summarized such that the HBDE unifies the three problems under consideration. The same solutions, however, are interpreted quite differently from one another: a correlation function of strings, the τ function of soliton theory and a transfer matrix of the solvable lattice models. From a mathematical point of view it is apparent that the HBDE embodies a very large symmetry which guarantees integrability of systems
\dagger E-mail address: saito@phys.metro-u.ac.jp
with infinite degrees of freedom irrespective of their physical interpretations. Such a mathematical unification of different models, however, does not mean we understand them from a physics point of view.

The case we are concerned with here, the link between the string models and the solvable lattice models, is most obscure since their relation is indirect. Apart from the fact that the correlation functions of strings and the transfer matrix of solvable models are governed by the same equation, their connection is not manifest at all. I would like to fill this gap by showing that the lattice models, whose Boltzmann weight is given by the four-point correlation function of the string models, are solvable. The proof is achieved by noting that the $s t u$ duality of the dual resonance models [1] guarantees that the Yang-Baxter equation can be solved.

To begin with let us briefly reformulate the string correlation functions in a way suitable for our discussion in the following [12,2]. We consider N external strings interacting with each other through the worldsheet specified by the ground state $|G\rangle$. It is given by

$$
\begin{equation*}
F_{G}\left(K_{1}, K_{2}, \ldots, K_{N}\right):=\langle 0| W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) \ldots W\left(K_{N}, g_{N}\right)|G\rangle \tag{2}
\end{equation*}
$$

Here the j th string is assumed to have momentum $K_{j}^{\mu}(z)$ distributed along a path $g_{j}(z)$ in the worldsheet. The path is assumed to close a contour as the local coordinate z of the worldsheet moves around a circle. The interaction takes place via the vertex operator [13]
$W\left(K_{j}, g_{j}\right)=\exp \left[\frac{1}{2 \pi} \oint \frac{\mathrm{~d} z}{z} K_{j}^{\mu}(z) X_{+}^{\mu}\left(g_{j}(z)\right)\right] \exp \left[\frac{1}{2 \pi} \oint \frac{\mathrm{~d} z}{z} K_{j}^{\mu}(z) X_{-}^{\mu}\left(g_{j}(z)\right)\right]$.
Here the string coordinate $X^{\mu}(z)=X_{+}^{\mu}(z)+X_{-}^{\mu}(z)$ is defined by the following expansion:

$$
\begin{align*}
& X_{-}^{\mu}(z)=x^{\mu}+\sum_{n=1}^{\infty} \frac{a_{n}^{\mu}}{\sqrt{n}} z^{n} \\
& X_{+}^{\mu}(z)=\mathrm{i} p^{\mu} \ln z+\sum_{n=1}^{\infty} \frac{a_{n}^{\dagger \mu}}{\sqrt{n}} z^{-n} \tag{4}
\end{align*}
$$

whose components satisfy

$$
\begin{equation*}
\left[x^{\mu}, p^{\nu}\right]=\mathrm{i} \delta^{\mu \nu} \quad\left[a_{m}^{\mu}, a_{n}^{\nu \dagger}\right]=\delta^{\mu \nu} \delta_{m n} \quad m, n \in \mathbb{Z}_{\geqslant 1} . \tag{5}
\end{equation*}
$$

If K_{j}^{μ} is a constant vector k_{j}^{μ}, the vertex operator $W\left(K_{j}, g_{j}\right)$ turns to the ordinary vertex operator for the external ground-state particle of momentum k_{j}^{μ}

$$
\begin{equation*}
V\left(k_{j}, z_{j}\right)=\mathrm{e}^{\mathrm{i} k_{j}^{\mu} X_{+}^{\mu}\left(z_{j}\right)} \mathrm{e}^{\mathrm{i} k_{j}^{\mu} X_{-}^{\mu}\left(z_{j}\right)} \tag{6}
\end{equation*}
$$

where $z_{j}=g_{j}(0)$. Therefore k_{j}^{μ} is the barycentric momentum of the j th string. To simplify the formulae, the spacetime indices μ, ν, \ldots will be suppressed in what follows.

The empty state $|0\rangle$ is defined by

$$
p|0\rangle=a_{n}|0\rangle=0 \quad n=1,2, \ldots,
$$

while the ground state is defined by $\left|G_{h}\right\rangle=G_{h}(X)|0\rangle$, where [14]
$G_{h}(X)=\theta\left(\zeta-\frac{1}{2 \pi} \oint \mathrm{~d} X(z) \int^{z} \omega\right) \exp \left[\frac{1}{8 \pi^{2}} \oint \mathrm{~d} X(x) \oint \mathrm{d} X(y) \ln \frac{E(x, y)}{x-y}\right]$.
$\theta, \omega, E(x, y), \zeta$ are the Riemann theta function, the Abel differential, the prime form, and an arbitrary vector, respectively, all defined on the worldsheet of genus h.

The connection of the correlation function (2) with the τ function of the KP hierarchy was shown [2] to follow

$$
\begin{equation*}
\frac{F_{G}\left(K_{1}, K_{2}, \ldots, K_{n}\right)}{F_{0}\left(K_{1}, K_{2}, \ldots, K_{n}\right)}=\tau(t) . \tag{8}
\end{equation*}
$$

Figure 1.

Here F_{0} is given by (2) with $|G\rangle$ replaced by $|0\rangle$, and t denotes the collection of the soliton coordinates $\left\{t_{1}, t_{2}, \ldots\right\}$ which are related to the string variables by

$$
\begin{equation*}
t_{n}=\frac{1}{n} \sum_{j=1}^{N} \frac{1}{2 \pi} \oint \frac{\mathrm{~d} z}{z} K_{j}(z) g_{j}^{n}(z) \quad n=1,2, \ldots \tag{9}
\end{equation*}
$$

Note that, when $K_{j}^{\mu}(z)=k_{j}^{\mu}$, this reduces to the Miwa transformation [4]. The proof that (8) satisfies (1) is exactly the same as in [2]. The variables in (1) are any three chosen out of the constant components of $K_{j}(z)$ s.

We now consider the link between the string model and the solvable lattice model. The main step toward this problem is to define the Boltzmann weight properly, so that the YangBaxter equation is solved. Here a two-dimensional lattice model is proposed whose links are specified by string momenta $K(z)$ s and Boltzmann weight is given by the four-point string correlation function

$$
\begin{equation*}
R_{K, K^{\prime}}^{K^{\prime \prime}, K^{\prime \prime \prime}}=\langle 0| W(K, g) W\left(K^{\prime}, g^{\prime}\right) \bar{W}\left(K^{\prime \prime}, g^{\prime \prime}\right) \bar{W}\left(K^{\prime \prime \prime}, g^{\prime \prime \prime}\right)|0\rangle \tag{10}
\end{equation*}
$$

Here \bar{W} is the operator whose in-state and out-state are reversed by changing $K(z)$ to $K\left(\frac{1}{z}\right)$ in (3). Note that $\bar{W}(K, g)$ can be always replaced by $W(K, \bar{g})$ with $\bar{g}(z)=g\left(\frac{1}{z}\right)$.

Using this Boltzmann weight the transfer matrix of the model is defined by

$$
\begin{equation*}
T_{K_{1}, K_{2}, \ldots, K_{M}}^{K_{1}^{\prime}, K_{2}^{\prime}, \ldots, K_{M}^{\prime}}=\sum_{\left\{K_{j}^{\prime \prime}\right\}} R_{K_{1}^{\prime \prime}, K_{1}}^{K_{1}^{\prime \prime}, K_{1}^{\prime}} R_{K_{2}^{\prime \prime}, K_{2}}^{K_{3}^{\prime \prime}, K_{2}^{\prime}} \ldots R_{K_{M}^{\prime \prime}, K_{M}}^{K_{M}^{\prime \prime}, K_{M}^{\prime}} . \tag{11}
\end{equation*}
$$

The summation over $K_{j}^{\prime \prime}$ means the functional integration over all possible paths of strings $K_{j}^{\prime \prime}$. In order to calculate the right-hand side of this formula we use the identity which holds under cyclic permutations

$$
\begin{align*}
& \langle 0| W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) \ldots W\left(K_{N-1}, g_{N-1}\right) \bar{W}\left(K_{N}, g_{N}\right)|0\rangle \\
& \quad=\langle 0| W\left(K_{N}, \bar{g}_{N}\right) W\left(K_{1}, g_{1}\right) \ldots W\left(K_{N-2}, g_{N-2}\right) \bar{W}\left(K_{N-1}, \bar{g}_{N-1}\right)|0\rangle \tag{12}
\end{align*}
$$

and also the factorization rule [12]

$$
\begin{align*}
\langle 0| W\left(K_{1}, g_{1}\right) & W\left(K_{2}, g_{2}\right) \ldots W\left(K_{j}, g_{j}\right) \ldots W\left(K_{N-1}, g_{N-1}\right) \bar{W}\left(K_{N}, g_{N}\right)|0\rangle \\
= & \sum_{K}\langle 0| W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) \ldots W\left(K_{j}, g_{j}\right) \bar{W}(K, g)|0\rangle \\
& \times\langle 0| W(K, g) W\left(K_{j+1}, g_{j+1}\right) \ldots W\left(K_{N-1}, g_{N-1}\right) \bar{W}\left(K_{N}, g_{N}\right)|0\rangle . \tag{13}
\end{align*}
$$

The summation over $K_{1}^{\prime \prime}$ in (11) reproduces exactly the one-loop string amplitude [15] and all the external ground-state particles are generalized to strings. Hence it turns out that it is
given explicitly by the $2 M$-point string correlation function, defined on a torus worldsheet associated with the ground state $\left|G_{1}\right\rangle$:

$$
\begin{align*}
T_{K_{1}, K_{2}, \ldots, K_{M}}^{K_{1}^{\prime}, K_{2}^{\prime}, \ldots, K_{M}^{\prime}} & =\langle 0| W\left(K_{1}, g_{1}\right) \bar{W}\left(K_{1}^{\prime}, g_{1}^{\prime}\right) W\left(K_{2}, g_{2}\right) \ldots \bar{W}\left(K_{M}^{\prime}, g_{M}^{\prime}\right)\left|G_{1}\right\rangle \\
& =F_{G_{1}}\left(K_{1}, \bar{K}_{1}^{\prime}, K_{2}, \bar{K}_{2}^{\prime}, \ldots, K_{M}, \bar{K}_{M}^{\prime}\right) \tag{14}
\end{align*}
$$

where \bar{K}_{j} means that the string K_{j} is in the outgoing state.
We now proceed to clarify the correspondence of the string correlation functions to the Yang-Baxter equation. Let $\mid \Phi)_{j}$ denote the vector on which the external string specified by K_{j} acts. This is different from the state $|\cdot\rangle$ on which the internal string line X of (4) acts. Every external string belongs to its own vector space [16, 13]. The Boltzmann weight $R_{K_{1}, K_{2}}^{K_{3}, K_{4}}$ changes the state $\left.\left.\mid \Phi\right)_{1} \otimes \mid \Phi\right)_{2}$ to $\left.\left.\mid \Phi\right)_{4} \otimes \mid \Phi\right)_{3}$. If K_{j} and K_{j}^{\prime} belong to the same vector space and K_{k} and K_{k}^{\prime} belong to another vector space, respectively, $R_{K_{j}, K_{k}}^{K_{j}^{\prime}, K_{k}^{\prime}}$ exchanges the strings. Namely

$$
\left.\left.\left.\left.R_{K_{j}, K_{k}}^{K_{j}^{\prime}, K_{k}^{\prime}} \mid \Phi\right)_{j} \mid \Phi\right)_{k}=\mid \Phi^{\prime}\right)_{k} \mid \Phi^{\prime}\right)_{j}
$$

The spectral parameter u which characterizes the Boltzmann weight can be identified by the logarithm of the ratio of $z_{j}=g_{j}(0)$ and $z_{k}=g_{k}(0), \ln \left(z_{j} / z_{k}\right)$. Note that they appear as spectral parameters of the inverse scattering problem for the KP hierarchy.

Now writing $R_{K_{j}, K_{k}}^{K_{j}^{\prime}, K_{k}^{\prime}}$ simply as $R_{j k}(u)$ the Yang-Baxter equation is given by

$$
\begin{equation*}
R_{12}(u) R_{13}(v) R_{23}(v-u)=R_{23}(v-u) R_{13}(v) R_{12}(u) \tag{15}
\end{equation*}
$$

where $u=\ln z_{1}-\ln z_{2}$ and $v=\ln z_{1}-\ln z_{3}$. This is a sufficient condition for the transfer matrices with different spectral parameters to commute each other, hence the model is solvable [17].

Instead of dealing with (15) we present a more general relation which holds among arbitrary Boltzmann functions.

$$
\begin{equation*}
\sum_{K, K^{\prime}, K^{\prime \prime}} R_{K, K^{\prime}}^{K_{4}, K_{5}} R_{K_{1}, K^{\prime \prime}}^{K, K_{6}} R_{K_{2}, K_{3}}^{K^{\prime}, K_{3}^{\prime \prime}}=\sum_{K, K^{\prime}, K^{\prime \prime}} R_{K^{\prime}, K}^{K_{5}, K_{6}} R_{K^{\prime \prime}, K_{3}}^{K_{4}, K} R_{K_{1}, K_{2}}^{K^{\prime \prime}, K_{2}^{\prime}} . \tag{16}
\end{equation*}
$$

The left- and right-hand sides of this equation correspond to figure 2.
To prove (16), I claim that it is nothing more than the duality relation. In fact, by using the permutation symmetry and the factorization property again, the left-hand side of (16)

Figure 2.
can be calculated as

$$
\begin{align*}
\sum_{K, K^{\prime}, K^{\prime \prime}}\langle 0| W(& K, g) W\left(K^{\prime}, g^{\prime}\right) \bar{W}\left(K_{4}, g_{4}\right) \bar{W}\left(K_{5}, g_{5}\right)|0\rangle \\
& \times\langle 0| W\left(K_{1}, g_{1}\right) W\left(K^{\prime \prime}, g^{\prime \prime}\right) \bar{W}(K, g) \bar{W}\left(K_{6}, g_{6}\right)|0\rangle \\
& \times\langle 0| W\left(K_{2}, g_{2}\right) W\left(K_{3}, g_{3}\right) \bar{W}\left(K^{\prime}, g^{\prime}\right) \bar{W}\left(K^{\prime \prime}, g^{\prime \prime}\right)|0\rangle \\
= & \sum_{K, K^{\prime}, K^{\prime \prime}}\langle 0| W\left(K^{\prime}, g^{\prime}\right) \bar{W}\left(K_{4}, g_{4}\right) \bar{W}\left(K_{5}, g_{5}\right) \bar{W}(K, \bar{g})|0\rangle \\
& \times\langle 0| W(K, \bar{g}) \bar{W}\left(K_{6}, g_{6}\right) W\left(K_{1}, g_{1}\right) \bar{W}\left(K^{\prime \prime}, \bar{g}^{\prime \prime}\right)|0\rangle \\
& \times\langle 0| W\left(K^{\prime \prime}, \bar{g}^{\prime \prime}\right) W\left(K_{2}, g_{2}\right) W\left(K_{3}, g_{3}\right) \bar{W}\left(K^{\prime}, g^{\prime}\right)|0\rangle \\
= & \langle 0| \bar{W}\left(K_{4}, g_{4}\right) \bar{W}\left(K_{5}, g_{5}\right) \bar{W}\left(K_{6}, g_{6}\right) W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) W\left(K_{3}, g_{3}\right)\left|G_{1}\right\rangle \tag{17}
\end{align*}
$$

while the right-hand side becomes

$$
\begin{align*}
\sum_{K, K^{\prime}, K^{\prime \prime}}\langle 0| W(& \left.K^{\prime}, g^{\prime}\right) W(K, g) \bar{W}\left(K_{5}, g_{5}\right) \bar{W}\left(K_{6}, g_{6}\right)|0\rangle \\
& \times\langle 0| W\left(K^{\prime \prime}, g^{\prime \prime}\right) W\left(K_{3}, g_{3}\right) \bar{W}\left(K_{4}, g_{4}\right) \bar{W}(K, g)|0\rangle \\
& \times\langle 0| W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) \bar{W}\left(K^{\prime \prime}, g^{\prime \prime}\right) \bar{W}\left(K^{\prime}, g^{\prime}\right)|0\rangle \\
= & \sum_{K, K^{\prime}, K^{\prime \prime}}\langle 0| W(K, g) \bar{W}\left(K_{5}, g_{5}\right) \bar{W}\left(K_{6}, g_{6}\right) \bar{W}\left(K^{\prime}, \bar{g}^{\prime}\right)|0\rangle \\
& \times\langle 0| W\left(K^{\prime}, \bar{g}^{\prime}\right) W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) \bar{W}\left(K^{\prime \prime}, g^{\prime \prime}\right)|0\rangle \\
& \times\langle 0| W\left(K^{\prime \prime}, g^{\prime \prime}\right) W\left(K_{3}, g_{3}\right) \bar{W}\left(K_{4}, g_{4}\right) \bar{W}(K, g)|0\rangle \\
= & \langle 0| \bar{W}\left(K_{5}, g_{5}\right) \bar{W}\left(K_{6}, g_{6}\right) W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) W\left(K_{3}, g_{3}\right) \bar{W}\left(K_{4}, g_{4}\right)\left|G_{1}\right\rangle . \tag{18}
\end{align*}
$$

These are two equivalent expressions of the 6-point one loop amplitude:

$$
\begin{align*}
& F_{G_{1}}\left(K_{1}, K_{2}, K_{3}, \bar{K}_{4}, \bar{K}_{5}, \bar{K}_{6}\right) \\
& \quad=\langle 0| W\left(K_{1}, g_{1}\right) W\left(K_{2}, g_{2}\right) W\left(K_{3}, g_{3}\right) \bar{W}\left(K_{4}, g_{4}\right) \bar{W}\left(K_{5}, g_{5}\right) \bar{W}\left(K_{6}, g_{6}\right)\left|G_{1}\right\rangle . \tag{19}
\end{align*}
$$

In other words they are two different ways of factorizing (19) [12]. The correspondence of (16) to (15) will become explicit if we substitute ($K, K^{\prime}, K^{\prime \prime}$) and ($K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}$) for ($K_{1}^{\prime \prime}, K_{2}^{\prime \prime}, K_{3}^{\prime \prime}$) and (K_{4}, K_{5}, K_{6}), respectively, and let K_{j}, K_{j}^{\prime}, $K_{j}^{\prime \prime}$ belong to the same vector space for each $j=1,2,3$. This justifies our claim.

We have just established the direct link between the string models and the solvable lattice models. In the rest of this paper I would like to demonstrate that, through some reduction, we can obtain a familiar solvable lattice model. It will, at the same time, partly explain the mysterious relation between the Yang-Baxter equation and the HBDE recently discussed in $[9,10]$.

The transfer matrix $T_{\nu}^{(\mu)}(\lambda)$ of the solvable lattice model associated with A_{l} symmetry was shown $[9,10]$ to solve the $\operatorname{HBDE}(1)$. The variables μ, ν and λ of $T_{\nu}^{(\mu)}(\lambda)$ denote the size of the $\mu \times \nu$ rectangular Young tableaux and the spectral parameter which specifies the Boltzmann weight. They are related to the variables k_{1}, k_{2}, k_{3} of the HBDE according to $\mu=k_{2}+k_{3}-1, v=k_{3}+k_{1}-1, \lambda=k_{1}+k_{2}-1$. This correspondence sounds rather artificial because μ and ν have meaning of the size of Young's tableaux and a range of certain finite intervals, while for the k_{1}, k_{2} and k_{3} range all integers or periodic boundary conditions are imposed.

Figure 3.

In order to resolve this unnatural aspect the HBDE is first written in terms of new variables

$$
\begin{gather*}
\alpha \tau(\lambda+1, \mu, v) \tau(\lambda-1, \mu, v)+\beta \tau(\lambda, \mu+1, v) \tau(\lambda, \mu-1, v) \\
+\gamma \tau(\lambda, \mu, v+1) \tau(\lambda, \mu, v-1)=0 \tag{20}
\end{gather*}
$$

where $\tau(\lambda, \mu, \nu)=f\left(k_{1}, k_{2}, k_{3}\right)$. In the following remark the results used are quoted from recent work [18] in a slightly different form, appropriate to this discussion.

Remark. Let $\tau(\lambda, \mu, v)$ be a solution of the $\operatorname{HBDE}(20)$, and $\mathbb{A}(\bar{\lambda}, \bar{\mu}, \bar{v})$ an octahedron consisting of the nearest neighbours of the point at $(\lambda, \mu, \nu)=(\bar{\lambda}, \bar{\mu}, \bar{\nu})$ in the lattice space \mathbb{Z}^{3}, then

$$
\bar{\tau}(\lambda, \mu, v)=\left\{\begin{array}{l}
\tau(\lambda, \mu, v),(\lambda, \mu, v) \in \mathbb{A}(\bar{\lambda}, \bar{\mu}, \bar{v}) \tag{21}\\
0 \quad \text { otherwise }
\end{array}\right.
$$

is also a solution to HBDE (20).
This is the smallest piece of Toda lattice which is shown in figure 3. The proof of (21) is simple. Consider another octahedron \mathbb{A}^{\prime} which shares at least one point of \mathbb{A}. Since $\tau(\lambda, \mu, v)=0$ on every lattice point surrounding \mathbb{A}, the $\tau(\lambda, \mu, v)$'s on the octahedron \mathbb{A}^{\prime} automatically satisfy (20).

The generalization of (21) to an arbitrary size of piece of Toda lattice is straightforward. Let us call such a piece a Toda molecule according to [19] \dagger. Then the smallest unit (21) should be called a Toda atom. A Toda molecule must be rectangular when it is sliced perpendicular to each axis of the lattice, for it to be a solution of the HBDE (20). We can consider a collection of Toda molecules if they are not joined to each other. An example of a slice of such a collection is given in figure 4. Note that each piece can be an independent solution of the HBDE.

Now we go back to our lattice model whose Boltzmann weight is given by $R_{K, K^{\prime}}^{K^{\prime \prime}, K^{\prime \prime \prime}}$ of (10) but K^{\prime} and $K^{\prime \prime \prime}$ are reduced to their barycentric momenta taking only integral numbers. Using this Boltzmann weight we construct the transfer matrix which carries only integral numbers in its legs. According to the above remarks we can consider any size of Toda molecules in equal basis. From this point of view we can think of this numbering of the legs as specifying the size of the rectangular slice of a molecule instead of the address on the lattice space.

[^0]

Figure 4. A slice of Toda molecules.

Adopting this convention we consider a solvable lattice model with the A_{l} symmetry. We identify the transfer matrix associated with the $\mu \times v=\left(k_{2}+k_{3}-1\right) \times\left(k_{3}+k_{1}-1\right)$ rectangular-type Young's tableaux with the same size of Toda molecule in the (μ, v) plane. Further identification of the spectral parameter λ with $k_{1}+k_{2}-1$ completes the desired correspondence.

In concluding this paper please note the following comments. The partition function of our lattice model itself is a correlation function (2) of strings. Hence it is a solution of the HBDE. This form of a general string correlation function was calculated [20] explicitly to reproduce (2) using the vertex operator W in (3) as a building block. From this point of view the solvable lattice model is nothing but a special case of analogous (or fish net) models [21] discussed in connection with hadron scattering processes. Therefore this model has been shown to be integrable in two folds. Namely, it satisfies the HBDE [2] and also satisfies the Yang-Baxter equation as shown in this paper.

The braid of strings was discussed in [22]. There, the vertex operator W was regarded as representing a state of the string, and a braid of strings was caused through an exchange of the order of $W \mathrm{~s}$. The exchange matrix was derived assuming that states of the strings were not changed under their exchange of order because of duality. Hence it is included as a special case of current work.

Acknowledgments

This work was supported in part by the Grant-in-Aid for General Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan (no 06835023), and the Fiscal Year 1996 Fund for Special Research Projects at Tokyo Metropolitan University.

References

[1] See for instance, Frampton P 1974 Dual Resonance Models (New York: Benjamin)
[2] Saito S 1987 Phys. Rev. Lett. 591798
Saito S 1987 Phys. Rev. D 361819
Saito S 1988 Phys. Rev. D 37990
Saito S 1989 Strings '88 ed S J Gates Jr, C R Preitscopf and W Siegel (Singapore: World Scientific) p 436

Saito S 1991 Nonlinear Fields: Classical, Random, Semiclassical ed P Garbaczewski and Z Popowicz (Singapore: World Scientific) p 286
Sogo K 1987 J. Phys. Soc. Japan 562291
Carroll R W 1991 Topics in Soliton Theory (North-Holland Mathematics Studies 167) (Amsterdam: NorthHolland) ch 3
[3] Hirota R 1981 J. Phys. Soc. Japan 503787
Hirota R 1983 Nonlinear Integrable Systems ed M Jimbo and T Miwa (Singapore: World Scientific) p 17
[4] Miwa T 1982 Proc. Japan Acad. 58A 9
Date E, Jimbo M and Miwa T 1982 J. Phys. Soc. Japan 514116
Date E, Jimbo M and Miwa T 1982 J. Phys. Soc. Japan 514125
[5] Sato M and Sato Y 1980 Publ. Res. Inst. Math. Sci. (Kyoto University) 388183
Sato M and Sato Y 1981 Publ. Res. Inst. Math. Sci. (Kyoto University) 414181
Sato M 1981 Publ. Res. Inst. Math. Sci. (Kyoto University) 43330
Date E, Jimbo M, Kashiwara M and Miwa T 1981 J. Phys. Soc. Japan 503806
Date E, Jimbo M, Kashiwara M and Miwa T 1981 J. Phys. Soc. Japan 503813
[6] Faddeev L D, Sklyanin E K and Takhtajan L A 1979 Theor. Math. Phys. 40194
[7] McCoy B, Perk J and Wu T T 1981 Phys. Rev. Lett. 46757
[8] Korepanov I 1995 Preprint solv-int/9506003
Kashaev R M 1995 Preprint solv-int/9512004
Korepanov I, Maillard J-M and Sergeev S 1996 Preprint PAR-LPTHE 96-53
[9] Krichever I, Lipan O, Wiegmann P and Zabrodin A 1996 Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations Preprint hepth/9604080
[10] Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 95215
Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 95267
Kuniba A, Nakamura S and Hirota R 1996 J. Phys. A: Math. Gen. 291759
Klümper A and Pearce P 1992 Physica 183A 304
[11] Saito S and Saitoh N 1987 J. Math. Phys. 281052
Saitoh N and Saito S 1987 J. Phys. Soc. Japan 561664
Saitoh N and Saito S 1990 J. Phys. A: Math. Gen. 233017
[12] Saito S 1971 Phys. Lett. 34B 72
Kosterlitz J M and Saito S 1971 Nucl. Phys. B 34557
Saito S and Kosterlitz J M 1972 Nucl. Phys. B 38269
[13] Della Selva A and Saito S 1970 Lett. Nuovo Cimento 4689
[14] Kato H and Saito S 1989 Lett. Math. Phys. 18117
[15] Frye G and Susskind L 1970 Phys. Lett. 31B 537
Gross D.J, Neveu A, Schrk J and Schwarz J H 1970 Phys. Rev. D 2697
Shapiro J 1972 Phys. Rev. D 51945
[16] Sciuto S 1969 Lett. Nuovo Cimento 2411
Caneschi L, Schwimmer A and Veneziano G 1969 Phys. Lett. 30B 356
Caneschi L and Schwimmer A 1970 Lett. Nuovo Cimento 3213
[17] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[18] Saitoh N and Saito S 1996 Coupling of small pieces of Toda lattice and its complex analysis Int. Symp. Advances in Soliton Theory and its Applications...The 30th Anniversary of the Toda Lattice (Hayama, Japan, December 1-4)
[19] Hirota R 1987 J. Phys. Soc. Japan 564285
[20] Carow-Watamura U, Ezawa Z F and Watamura S 1989 Nucl. Phys. B 315166
Carow-Watamura U, Ezawa Z F, Tezuka A and Watamura S 1989 Phys. Lett. B 221299
Carow-Watamura U, Ezawa Z F, Tezuka A and Watamura S 1989 Nucl. Phys. B 319187
[21] Fairlie D and Nielsen H 1970 Nucl. Phys. B 20637
Gervais J-L and Sakita B 1971 Phys. Rev. D 42291
[22] Cateau H and Saito S 1990 Phys. Rev. Lett. 652487

[^0]: \dagger The term 'Toda molecule' is often used in a slightly different sense. We use this name to mean what we defined in the remark.

